If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+4x-32=0
a = 5; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·5·(-32)
Δ = 656
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{656}=\sqrt{16*41}=\sqrt{16}*\sqrt{41}=4\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{41}}{2*5}=\frac{-4-4\sqrt{41}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{41}}{2*5}=\frac{-4+4\sqrt{41}}{10} $
| x+(x^2)/20=75 | | Y=(3/5)(x-50) | | 5x-15=5x+11 | | Y+6x=10 | | 丨y+2丨=8 | | 115+2x=80 | | 2(3a+2)-17=15 | | 5(x-5)(x-5)=0 | | 7/8x=26 | | -3(3+x)+4(x−6)=−4 | | 2x+7-x=9+2x-7 | | 7r-33=-4(2-3r) | | -7k-7k=-7(2k+3)+3(4k+7) | | x+3/9=1-x+1/2 | | 4x2−48x+144=0 | | 8b-7b=15b | | 12+x+160=22x+4 | | -3/5x-7/10x+1/2=-56 | | 5t^2-8t+9=0 | | 9+5a/2=4 | | 8^2+10x=3 | | 49-x=19 | | 7/2h-6=-7/3h-7/2 | | 14-7(2x-1)=-7 | | -5(x-1)=-6x-2 | | X+6-2x=x+1 | | -3(s-2)+17=21 | | 288=8(-6v+6) | | -5+15x-10=12x | | 1/3b+2=1/4b+8 | | -2(3x-2)=-5x+10 | | 2/3x+4=1/3x+12 |